Exact and Numerical Solutions of Poisson Equation for Electrostatic Potential Problems

نویسندگان

  • Selçuk Yıldırım
  • Mohammad Younis
چکیده

Homotopy perturbation method HPM and boundary element method BEM for calculating the exact and numerical solutions of Poisson equation with appropriate boundary and initial conditions are presented. Exact solutions of electrostatic potential problems defined by Poisson equation are found using HPM given boundary and initial conditions. The same problems are also solved using the BEM. The cell integration approach is used for solving Poisson equation by BEM. The problem region containing the charge density is subdivided into triangular elements. In addition, this paper presents a numerical comparison with the HPM and BEM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation

A hybrid approach for solving the nonlinear Poisson-Boltzmann equation (PBE) is presented. Under this approach, the electrostatic potential is separated into (1) a linear component satisfying the linear PBE and solved using a fast boundary element method and (2) a correction term accounting for nonlinear effects and optionally, the presence of an ion-exclusion layer. Because the correction pote...

متن کامل

An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures

In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...

متن کامل

Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions

In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008